一. 考試性質

中國科學院大學碩士研究生入學高等數(shù)學(甲)考試是為招收理學非數(shù)學專業(yè)碩士研究生而設置的選拔考試。它的主要目的是測試考生的數(shù)學素質,包括對高等數(shù)學各項內容的掌握程度和應用相關知識解決問題的能力??荚噷ο鬄閰⒓尤珖T士研究生入學考試、并報考理論物理、原子與分子物理、粒子物理與原子核物理、等離子體物理、凝聚態(tài)物理、天體物理、天體測量與天體力學、空間物理學、光學、物理電子學、微電子與固體電子學、電磁場與微波技術、物理海洋學、海洋地質、氣候學等專業(yè)的考生。

二. 考試的基本要求

要求考生系統(tǒng)地理解高等數(shù)學的基本概念和基本理論,掌握高等數(shù)學的基本方法。要求考生具有抽象思維能力、邏輯推理能力、空間想象能力、數(shù)學運算能力和綜合運用所學的知識分析問題和解決問題的能力。

三. 考試方法和考試時間

高等數(shù)學(甲)考試采用閉卷筆試形式,試卷滿分為150分,考試時間為180分鐘。

四. 考試內容和考試要求

(一)函數(shù)、極限、連續(xù)

考試內容

函數(shù)的概念及表示法 函數(shù)的有界性、單調性、周期性和奇偶性 復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質及其圖形

數(shù)列極限與函數(shù)極限的概念 無窮小和無窮大的概念及其關系 無窮小的性質及無窮小的比較 極限的四則運算 極限存在的單調有界準則和夾逼準則 兩個重要極限:

函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質 函數(shù)的一致連續(xù)性概念

考試要求

1. 理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應用問題中的函數(shù)關系式。

2. 理解函數(shù)的有界性、單調性、周期性和奇偶性。掌握判斷函數(shù)這些性質的方法。

3. 理解復合函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。會求給定函數(shù)的復合函數(shù)和反函數(shù)。

4. 掌握基本初等函數(shù)的性質及其圖形。

5. 理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關系。

6. 掌握極限的性質及四則運算法則,會運用它們進行一些基本的判斷和計算。

7. 掌握極限存在的兩個準則,并會利用它們求極限。掌握利用兩個重要極限求極限的方法。

8. 理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。

9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型。

10. 掌握連續(xù)函數(shù)的運算性質和初等函數(shù)的連續(xù)性,熟悉閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值和最小值定理、介值定理等),并會應用這些性質。

11.理解函數(shù)一致連續(xù)性的概念。

(二)一元函數(shù)微分學

考試內容

導數(shù)的概念 導數(shù)的幾何意義和物理意義 函數(shù)的可導性與連續(xù)性之間的關系 平面曲線的切線和法線 基本初等函數(shù)的導數(shù)

導數(shù)的四則運算 復合函數(shù)、反函數(shù)、隱函數(shù)的導數(shù)的求法 參數(shù)方程所確定的函數(shù)的求導方法 高階導數(shù)的概念 高階導數(shù)的求法 微分的概念和微分的幾何意義 函數(shù)可微與可導的關系
微分的運算法則及函數(shù)微分的求法 一階微分形式的不變性 微分在近似計算中的應用 微分中值定理 洛必達(L’Hospital)法則 泰勒(Taylor)公式 函數(shù)的極值 函數(shù)最大值和最小值 函數(shù)單調性 函數(shù)圖形的凹凸性、拐點及漸近線 函數(shù)圖形的描繪 弧微分及曲率的計算

考試要求

1. 理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,掌握函數(shù)的可導性與連續(xù)性之間的關系。

2. 掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初等函數(shù)的求導公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分。

3. 了解高階導數(shù)的概念,會求簡單函數(shù)的n階導數(shù)。

4. 會求分段函數(shù)的一階、二階導數(shù)。

5. 會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導數(shù)

6. 會求反函數(shù)的導數(shù)。

7. 理解并會用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒定理。

8. 理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應用。

9. 會用導數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形。

10. 掌握用洛必達法則求未定式極限的方法。

11.了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。

(三)一元函數(shù)積分學

考試內容

原函數(shù)和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 變上限定積分定義的函數(shù)及其導數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 廣義積分(無窮限積分、瑕積分) 定積分的應用

考試要求

1. 理解原函數(shù)的概念,理解不定積分和定積分的概念。

2. 熟練掌握不定積分的基本公式,熟練掌握不定積分和定積分的性質及定積分中值定理。掌握牛頓-萊布尼茨公式。熟練掌握不定積分和定積分的換元積分法與分部積分法。

3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。

4. 理解變上限定積分定義的函數(shù),會求它的導數(shù)。

5. 理解廣義積分(無窮限積分、瑕積分)的概念,掌握無窮限積分、瑕積分的收斂性判別法,會計算一些簡單的廣義積分。

6. 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、截面面積為已知的立體體積、功、引力、壓力)及函數(shù)的平均值。

(四)向量代數(shù)和空間解析幾何

考試內容

向量的概念 向量的線性運算 向量的數(shù)量積、向量積和混合積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標表達式及其運算 單位向量 方向數(shù)與方向余弦 曲面方程和空間曲線方程的概念 平面方程、直線方程 平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件 點到平面和點到直線的距離 球面 母線平行于坐標軸的柱面 旋轉軸為坐標軸的旋轉曲面的方程 常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標面上的投影曲線方程

考試要求

1. 熟悉空間直角坐標系,理解向量及其模的概念。

2. 熟練掌握向量的運算(線性運算、數(shù)量積、向量積),掌握兩向量垂直、平行的條件。

3. 理解向量在軸上的投影,了解投影定理及投影的運算。理解方向數(shù)與方向余弦、向量的坐標表達式,會用坐標表達式進行向量的運算。

4. 熟悉平面方程和空間直線方程的各種形式,熟練掌握平面方程和空間直線方程的求法。

5. 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等)解決有關問題。

6. 會求空間兩點間的距離、點到直線的距離以及點到平面的距離。

7. 了解空間曲線方程和曲面方程的概念。

8. 了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標平面上的投影,并會求其方程。

9. 了解常用二次曲面的方程、圖形及其截痕,會求以坐標軸為旋轉軸的旋轉曲面及母線平行于坐標軸的柱面方程。